
Lecture 7: Some GLS Approaches to Time-Series

1. Time-series analysis is about dealing with a subscript that has additional meaning than
just ‘name of the observation’.  
a. Consider .  Here, the subscript is t to indicate that we are thinkingt tY X β ε= +

in terms observations going t=1,...,T where the ordering subscript t has some
meaningCit puts observations in order.

b. Given that t is time, we might worry that Y depends on time.  Thus, it would be
natural to consider a model

c. ( )t tY X g tβ ε= + +
i. Intuition from cross-sectional econometrics will not serve us well here.  If

we wanted to be fully flexible with respect the partial effect of time, we
might consider modelling g as a set of dummy variables for each and every
year in the data.  Unfortunately, this would require T-1 dummy variables,
and the T-1 degrees of freedom to estimate them.  If X included anything
other than a constant, we could not get parameters for those extra things.

d. So, functional restrictions on g are necessary for identification.  For example,

e.  Allows for a quadratic time-trend.2
t tY X t tβ γ δ ε= + + +

f. Here, the effect of X on Y conditions out the quadratic time-trend.
i. What if t causes variation in both X and Y?  Then, leaving out the time

trend will cause a sprurious correlation between X and Y.  This is a form of
endogeneity due to missing variables.

ii. Similarly, leaving out important parts of the time trend will cause
endogeneity and potentially sprurious correlation between X and Y.  An
example is using a linear time trend where the effect is really quadratic.

g. One can picture the time trend as interacting with the constant (as above), or as
interacting with other pieces of X.  Consider X=[1 x].  One could model 

h. t tY x t xtα β γ δ ε= + + + +
2. Time-series models typically have over-time correlations in the disturbances or in the

regressors.  If there are no over-time correlations, then OLS is just fine.  But with over-
time correlations, OLS may be inefficient or even inconsistent.

3. Over-Time correlations in the disturbances are typically described as either "moving-
average" or "autocorrelated" processes.  First, consider Moving-Average Processes,
which are comprised of random elements which vary over time.
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average.
ii. Here, the disturbance depends on a random variable epsilon, and has a

short memory, lasting only q periods.
iii. What is the covariance matrix for the disturbances?
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v. Since the u’s are uncorrelated with each other, this expectation only has
nonzero elements for the common u terms:
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viii. If we knew the theta’s in advance, we could do GLS: write out the
V(epsilon) matrix, compute the Transformation matrix (equal to its ‘minus
one-half’ matrix), and regress TY on TX.

ix. More often, we don’t know the theta’s in advance, but perhaps we know
how many orders there are in the MA process.  In this case, we know the
structure of V(epsilon), and we know that this covariance matrix for the
disturbances has only q parameters, and q does not grow with N.  

x. Thus, there is an FGLS approachCestimate a first stage, collect residuals,
estimate the q parameters, compute the covariance matrix for the
disturbances, premultiply by the ‘minus-one-half’ matrix.

4. Next, consider Auto-regressive processes.  In a moving average process, a big u affects
things only for q periods.  Then it is gone.  Alternatively, we might think that a big u
would sort of ‘fade out’, but never completely disappear.  Consider
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b. What does the covariance matrix for disturbances look like?Σ
c. we can recursively substitute:
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e. Assuming that the variance of the disturbance tends to a finite value (aka "is

stationary"), the variance of the disturbance is given by noticing that
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because u is uncorrelated with past disturbances.

f. The covariances of disturbances s,t is highest contemporaneously, and diminishes
with the strength .ρ

i.  and
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iii. Here,  has only two parameters , and since they do not increase inΣ 2,uσ ρ
number with T, we can get consistent estimates of them via a first stage
regression and then implement FGLS.

iv. One could write an AR(p) process with longer lags mattering directly as
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vi. The GLS approach to an AR process is similar in spirit to that for an MA
process.  By specifying the AR process, the covariance matrix for the
disturbances depends on just a few parameters.  All we need is a consistent
estimate of those parameters, and we can obtain a consistent estimate of
the covariance matrix.  Then, apply FGLS. 

5. The strategies above provide an asymptotically more efficient estimator than the OLS
estimator.  Suppose that instead of trying to use FGLS to obtain efficient estimates of
parameters, we instead tried to obtain the robust covariance matrix for OLS coefficients?

In this case, we need an estimate  to make the sandwich:�'X XΩ

a. �( ) ( ) ( )1 1
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b. The Newey-West robust covariance matrix uses estimates of from the2,uσ ρ

regression to construct .�'X XΩ
6. Stationarity and Unit Roots

a. Roughly speaking, a variable is stationary over time if the covariance between
two observations separated by j=0,..,T periods is finite.

b. We say that it is nonstationary if any one of those covariances (including the



variance of the variable itself) is infinite.
c. The finiteness of the variance is connected with the persistence of past

disturbances in the composition of current disturbances.
d. Consider  in the AR1 described above.  In this case, the disturbance for any1ρ =

period is equal to .  As t gets large, the disturbance becomes the sum
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of more and more normal variates.  As t goes to infinity, the disturbance goes to
an infinitely large sum of normals.  Its variance goes to a chi-square with infinite
degrees of freedom, that is, its variance goes to infinity.  

e. Because the disturbance here contains a contribution from its past equal to 1 that
does not diminish with time, we say that it has a ‘unit root’.

f. One might equally say that in this case, the disturbance is an integrated process,
because its new contributions keep adding on to the old.  The new value of the
disturbance is computed by integrating over all the old ones.

g. One can see this by evaluating the term  which premultiplies the
2
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covariance matrix of disturbances.  As , so too does that term.ρ → ∞
h. If the regression disturbances have infinite variance, then OLS and GLS and

FGLS cannot yield consistent inferenceCthe standard errors will be wrong no
matter what you do regarding .  Further, the variance of OLS/GLS/FGLSΩ
estimated coefficients will contain a variance that goes to infinity.  Bad all round.

7. This same problem emerges if X has some covarying variables that depend contain a ‘unit
root’.
a. Let the regression be given by
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c. Here, x and z covary through u.  For example, let y be productivity, x be wages

and z be prices.   x and z must covary because wages contain prices.  However,
they are not collinear, because they each have a piece of variation that is distinct
from the other.  In a Venn diagram, the relative size of the variation in u compared
to the distinct variation will tell you how easy it is to identify the parameters.  If
the distinct variation is zero, you have a multicollinearity problem.

d. Now, consider an environment where

e. , so that u is an AR1 process.2
1 , [ ']t t t Tu u E Iνρ ν νν σ−= + =

f. Here, the variance of u goes to infinity as t goes to infinity, by the same reasoning
as a for an AR1 model disturbance. 

g. As the variance of u rises, its variation dominates the total variation of x and z. 
Thus, in the limit, x and z become linear in each other, and you have a problem of
perfect multicollinearity.  



h. This is the problem of cointegrating right-hand side variables.  
i. Normally, covarying right-hand side variables is only a problem if they are

perfectly covarying, because in this case there is no separate variation to identify
each from each.  

j. However, even if they are only perfectly covarying in the limit, you end up with
this same problem in the limit.

k. Thus, an integrated disturbance in covarying right-hand side variables may for
short T seem to be okay, as T gets large, it kills your ability to identify the
coefficients of the model.

8. Differencing is a strategy used to deal with integrated RHS variables (including
disturbances). 
a. Consider differencing a model with an integrated disturbance term.
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c. The symbol is the ‘difference operator’, which tells you to subtract the lagged∆
value from the variable on which it operates.  Thus, for any z.1t t tz z z −∆ = −

d. In this case, differencing solves the problem of an integrated disturbance term
completely.  A regression of difference Y on differenced X purges the model of the
integrated disturbance, leaving only the well-behaved u.

e. However, differenced models do not depend on level information to identify
anything.  The spirit of differencing is: "if x cause y, then changes in x cause
changes in y, and i can use the latter information to identify my model". 

f. However, dropping the level information and looking only at changes can be
costly.  Consider a panel context, where different countries have different levels
of various right-hand side variables.  If we difference (over time) in such a model,
the only variation remaining is the over-time variation within countries in these
various right-hand side variables.  The initial differences across countries is
purged along with the integrated disturbance.

9. When right-hand side variables are cointegrated, and sometimes, we can use the structural
information we have to compress the model so that the integrated part disappears.
a. For example, in the wages and prices model above, we could use ‘real wages’

equal to wages divided by prices as a single right-hand side variable.  Here, the
integrated part could drop out, or be differenced out.


